Reproducing Kernel Banach Spaces with the ℓ1 Norm II: Error Analysis for Regularized Least Square Regression

نویسندگان

  • Guohui Song
  • Haizhang Zhang
چکیده

A typical approach in estimating the learning rate of a regularized learning scheme is to bound the approximation error by the sum of the sampling error, the hypothesis error and the regularization error. Using a reproducing kernel space that satisfies the linear representer theorem brings the advantage of discarding the hypothesis error from the sum automatically. Following this direction, we illustrate how reproducing kernel Banach spaces with the l norm can be applied to improve the learning rate estimate of l-regularization in machine learning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Rates of Least-Square Regularized Regression

This paper considers the regularized learning algorithm associated with the leastsquare loss and reproducing kernel Hilbert spaces. The target is the error analysis for the regression problem in learning theory. A novel regularization approach is presented, which yields satisfactory learning rates. The rates depend on the approximation property and the capacity of the reproducing kernel Hilbert...

متن کامل

Reproducing Kernel Hilbert Spaces in Learning Theory: the Sphere and the Hypercube

We analyze the regularized least square algorithm in learning theory with Reproducing Kernel Hilbert Spaces (RKHS). Explicit convergence rates for the regression and binary classification problems are obtained in particular for the polynomial and Gaussian kernels on the n-dimensional sphere and the hypercube. There are two major ingredients in our approach: (i) a law of large numbers for Hilber...

متن کامل

Some Properties of Reproducing Kernel Banach and Hilbert Spaces

This paper is devoted to the study of reproducing kernel Hilbert spaces. We focus on multipliers of reproducing kernel Banach and Hilbert spaces. In particular, we try to extend this concept and prove some related theorems. Moreover, we focus on reproducing kernels in vector-valued reproducing kernel Hilbert spaces. In particular, we extend reproducing kernels to relative reproducing kernels an...

متن کامل

Application of integral operator for regularized least-square regression

In this paper, we study the consistency of the regularized least square regression in a general reproducing kernel Hilbert spaces. We characterized the compactness of the inclusion map from a reproducing kernel Hilbert space to the space of continuous functions and showed that the capacity based analysis by uniform covering numbers may fail in a very general setting. We prove the consistency an...

متن کامل

Reproducing Kernel Banach Spaces with the l1 Norm

Targeting at sparse learning, we construct Banach spaces B of functions on an input space X with the following properties: (1) B possesses an l norm in the sense that B is isometrically isomorphic to the Banach space of integrable functions on X with respect to the counting measure; (2) point evaluations are continuous linear functionals on B and are representable through a bilinear form with a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural Computation

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2011